

# Addis Ababa Institute of Technology School of Information Technology and Engineering Department of Software Engineering **Location Intelligence: Supermarket Site Selection** All In One Documentation

### **Team Members**

| Eyosias Samson    | ATR/0484/09 |
|-------------------|-------------|
| Gemmechu Mohammed | ATR/1432/09 |
| Khalid Sultan     | ATR/8444/09 |
| Tsedeniya Solomon | ATR/9796/09 |

Advisor: Mr. Nebiat Fikru

Date: September/2021

### ACKNOWLEDGMENT

Many people have contributed to the development of this concept into what it is today. As a result, we'd like to express our gratitude to these individuals for their assistance. First and foremost, we would like to express our heartfelt gratitude to our advisor, Nebiat Fikru, for his unwavering support of our final year project, as well as his motivation and vast knowledge.

We would like to thank the School of Information Technology and Engineering, as well as the project committee and for allowing us to design and implement this project.

Dr Degife Tibebe, our former Geographic Information System teacher, deserves our sincere appreciation for assisting us in gathering data. And we would like to thank Mr Amanuel Negash, our teacher for his guidance throughout the project.

Finally, but not least, we would like to thank our family for their enormous support in our lives and for encouraging us.

# **Table of Contents**

| ACKNOWLEDGMENT                 | 2  |
|--------------------------------|----|
| List of Figures                | 7  |
| List of Tables                 | 9  |
| ACRONYMS                       | 11 |
| ABSTRACT                       | 12 |
| Chapter 1: Introduction        | 13 |
| Background                     | 13 |
| The Existing System            | 13 |
| Statement of the Problem       | 14 |
| Objective of the Project       | 15 |
| General Objective              | 15 |
| Specific Objective             | 15 |
| Proposed System                | 15 |
| Feasibility Study              | 16 |
| Economic Feasibility           | 16 |
| Developmental cost             | 16 |
| Operational Cost               | 16 |
| Technical Feasibility          | 16 |
| Schedule Feasibility           | 17 |
| Scope                          | 17 |
| Methodology                    | 17 |
| Data source and collection     | 17 |
| Software Development Lifecycle | 17 |
| Development Tools              | 18 |
| Testing                        | 18 |
| Project Management plan        | 19 |

3

| 19 |
|----|
| 19 |
| 20 |
| 22 |
| 22 |
| 22 |
| 25 |
| 25 |
| 25 |
| 25 |
| 25 |
| 29 |
| 29 |
| 30 |
| 30 |
| 30 |
| 30 |
| 31 |
| 31 |
| 32 |
| 32 |
| 33 |
| 33 |
| 34 |
| 34 |
| 34 |
| 34 |
| 35 |
|    |

| Security                            | 35 |
|-------------------------------------|----|
| Maintainability                     | 35 |
| Portability                         | 35 |
| Inverse Requirements                | 35 |
| Design Constraints                  | 35 |
| Logical Database Requirements       | 35 |
| Other Requirements                  | 36 |
| Change Management Process           | 36 |
| Chapter 3: System Design            | 37 |
| General Overview                    | 37 |
| Development Methods & Contingencies | 38 |
| System Architecture                 | 40 |
| Subsystem decomposition             | 40 |
| Hardware/software mapping           | 41 |
| Object Model                        | 42 |
| Class Diagram                       | 42 |
| Sequence Diagram                    | 43 |
| Select Location                     | 43 |
| Analyze Location                    | 44 |
| View Details                        | 45 |
| Detailed Design                     | 45 |
| Location Class                      | 45 |
| Location Selector Class             | 46 |
| Rate Location Class                 | 47 |
| Location Analyzer Class             | 47 |
| Preprocessor Class                  | 48 |
| Cache Checker Class                 | 49 |
| Pseudocode and Algorithm Analysis   | 49 |

| Data collection                                 | 49 |
|-------------------------------------------------|----|
| Train the model                                 | 52 |
| Prediction                                      | 53 |
| Chapter 4: Testing                              | 54 |
| Introduction                                    | 54 |
| Features to be tested/not to be tested          | 54 |
| Features to be tested                           | 54 |
| Features not to be tested                       | 55 |
| Pass/Fail criteria                              | 55 |
| Approach/Strategy                               | 55 |
| Testing Levels                                  | 56 |
| Unit Testing                                    | 56 |
| Integration Testing                             | 56 |
| System Testing                                  | 56 |
| Testing Types                                   | 56 |
| Testing Methods                                 | 56 |
| Test cases with specifications                  | 57 |
| Chapter 5: User Manual                          | 59 |
| Scope                                           | 59 |
| Installation and configuration                  | 59 |
| How to Operate the system                       | 59 |
| <b>Chapter 6: CONCLUSION AND RECOMMENDATION</b> | 63 |
| Conclusion                                      | 63 |
| Recommendation                                  | 63 |
| BIBLIOGRAPHY                                    | 64 |
| APPENDIX                                        | 65 |
| REFERENCES                                      | 66 |
|                                                 |    |

7

# List of Figures

| Figure 1 Data flow Diagram                             | 11 |
|--------------------------------------------------------|----|
| Figure 2 Time Management Plan                          | 14 |
| Figure 3 UI-01 - Home Page                             | 20 |
| Figure 4 UI-02 - Preferred Locations                   | 21 |
| Figure 5 UI-03 - Analysis Result                       | 22 |
| Figure 6 UI-04 - Location Details                      | 23 |
| Figure 7 Use Case Diagram                              | 26 |
| Figure 8 System Overview                               | 33 |
| Figure 9 CRISP-DM Cycle                                | 34 |
| Figure 10 Level 0 Decomposition                        | 35 |
| Figure 11 Level 1 Decomposition                        | 36 |
| Figure 12 Level 2 Decomposition                        | 36 |
| Figure 13 Architecture                                 | 37 |
| Figure 14 Class Diagram                                | 38 |
| Figure 15 Select Location                              | 39 |
| Figure 16 Analyze Location                             | 40 |
| Figure 17 View Details                                 | 41 |
| Figure 18 List of data we collect from Google Maps API | 47 |
| Figure 19 Demographic Data Example                     | 47 |
| Figure 20 Pseudo code for feature extraction           | 51 |
| Figure 21 Neural Networks Design                       | 52 |
| Figure 22 Landing page of the Application              | 58 |
| Figure 23 Preferred location through search box        | 59 |
| Figure 24 Preferred location through panning           | 59 |
| Figure 25 Analyze Locations                            | 60 |
| Figure 26 View details of analyzed locations           | 60 |

# List of Tables

| Table 2 Communication Management Plan16Table 3 UI-01 Home Page21Table 4 : UI-02 Preferred Locations22Table 5 UI-03 Analysis Result23Table 6 UI-04 - Location Details24Table 7 FR-01 - Select Preferred Locations25Table 8 FR-02 - Analyze Locations26Table 9 FR-03 - Rate Locations26Table 10 FR-04 - Location Details26Table 11 UC-01 - Select Preferred Locations27Table 12 UC-02 - Analyze Locations28Table 13 UC-03 - Rating Locations28Table 14 UC-04 - Location Details29Table 15 Logical Database Requirements31Table 16 Location Class Design43Table 19 Attribute Description For Location Selector Class43Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 4 : UI-02 Preferred Locations22Table 5 UI-03 Analysis Result23Table 6 UI-04 - Location Details24Table 6 UI-04 - Location Details24Table 7 FR-01 - Select Preferred Locations25Table 8 FR-02 - Analyze Locations26Table 9 FR-03 - Rate Location Details26Table 10 FR-04 - Location Details26Table 10 FR-04 - Location Details26Table 11 UC-01 - Select Preferred Locations27Table 12 UC-02 - Analyze Locations28Table 13 UC-03 - Rating Locations28Table 14 UC-04 - Location Details29Table 15 Logical Database Requirements31Table 16 Location Class Design43Table 18 Location Selector Class43Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44               |
| Table 5 UI-03 Analysis Result23Table 6 UI-04 - Location Details24Table 7 FR-01 - Select Preferred Locations25Table 8 FR-02 - Analyze Locations26Table 9 FR-03 - Rate Locations26Table 10 FR-04 - Location Details26Table 10 FR-04 - Location Details26Table 11 UC-01 - Select Preferred Locations27Table 12 UC-02 - Analyze Locations27Table 13 UC-03 - Rating Locations28Table 14 UC-04 - Location Details29Table 15 Logical Database Requirements31Table 16 Location Class Design42Table 18 Location Selector Class43Table 19 Attribute Description for Location Selector Class43Table 20 Operational Description for Rate Location Class44Table 21 Rate Location Class Design44Table 23 Location Analyzer Class Design44                                                                                               |
| Table 6 UI-04 - Location Details24Table 7 FR-01 - Select Preferred Locations25Table 8 FR-02 - Analyze Locations26Table 9 FR-03 - Rate Location Details26Table 10 FR-04 - Location Details26Table 11 UC-01 - Select Preferred Locations27Table 12 UC-02 - Analyze Locations28Table 13 UC-03 - Rating Locations28Table 14 UC-04 - Location Details29Table 15 Logical Database Requirements31Table 16 Location Class Design42Table 18 Location Selector Class43Table 19 Attribute Description for Location Selector Class43Table 20 Operational Description for Rate Location Class44Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44                                                                                                                                         |
| Table 7 FR-01 - Select Preferred Locations25Table 8 FR-02 - Analyze Locations26Table 9 FR-03 - Rate Locations26Table 10 FR-04 - Location Details26Table 10 FR-04 - Location Details26Table 11 UC-01 - Select Preferred Locations27Table 12 UC-02 - Analyze Locations28Table 13 UC-03 - Rating Locations28Table 14 UC-04 - Location Details29Table 15 Logical Database Requirements31Table 16 Location Class Design42Table 17 Attribute Description For Location Selector Class43Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                    |
| Table 8 FR-02 - Analyze Locations26Table 9 FR-03 - Rate Locations26Table 10 FR-04 - Location Details26Table 10 FR-04 - Location Details27Table 11 UC-01 - Select Preferred Locations27Table 12 UC-02 - Analyze Locations28Table 13 UC-03 - Rating Locations28Table 14 UC-04 - Location Details29Table 15 Logical Database Requirements31Table 16 Location Class Design42Table 17 Attribute Description For Location Selector Class43Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                                                                |
| Table 9 FR-03 - Rate Locations26Table 10 FR-04 - Location Details26Table 10 FR-04 - Location Details26Table 11 UC-01 - Select Preferred Locations27Table 12 UC-02 - Analyze Locations28Table 13 UC-03 - Rating Locations28Table 13 UC-04 - Location Details29Table 14 UC-04 - Location Details29Table 15 Logical Database Requirements31Table 16 Location Class Design42Table 17 Attribute Description For Location Class43Table 18 Location Selector Class Design43Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                                |
| Table 10 FR-04 - Location Details26Table 11 UC-01 - Select Preferred Locations27Table 12 UC-02 - Analyze Locations28Table 13 UC-03 - Rating Locations28Table 13 UC-04 - Location Details29Table 14 UC-04 - Location Details29Table 15 Logical Database Requirements31Table 16 Location Class Design42Table 17 Attribute Description For Location Class43Table 18 Location Selector Class Design43Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                                                                                                   |
| Table 11 UC-01 - Select Preferred Locations27Table 12 UC-02 - Analyze Locations28Table 13 UC-03 - Rating Locations28Table 13 UC-04 - Location Details29Table 14 UC-04 - Location Details29Table 15 Logical Database Requirements31Table 16 Location Class Design42Table 17 Attribute Description For Location Class43Table 18 Location Selector Class Design43Table 19 Attribute Description for Location Selector Class43Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                                                                          |
| Table 12 UC-02 - Analyze Locations28Table 13 UC-03 - Rating Locations28Table 13 UC-04 - Location Details29Table 14 UC-04 - Location Details29Table 15 Logical Database Requirements31Table 16 Location Class Design42Table 16 Location Class Design43Table 17 Attribute Description For Location Class43Table 18 Location Selector Class Design43Table 19 Attribute Description for Location Selector Class43Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                                                                                       |
| Table 13 UC-03 - Rating Locations28Table 14 UC-04 - Location Details29Table 14 UC-04 - Location Details31Table 15 Logical Database Requirements31Table 15 Location Class Design42Table 16 Location Class Design43Table 17 Attribute Description For Location Class43Table 18 Location Selector Class Design43Table 19 Attribute Description for Location Selector Class43Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                                                                                                                           |
| Table 14 UC-04 - Location Details29Table 15 Logical Database Requirements31Table 15 Logical Database Requirements31Table 16 Location Class Design42Table 16 Location Class Design43Table 17 Attribute Description For Location Class43Table 18 Location Selector Class Design43Table 19 Attribute Description for Location Selector Class43Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                                                                                                                                                         |
| Table 15 Logical Database Requirements31Table 16 Location Class Design42Table 16 Location Class Description For Location Class43Table 17 Attribute Description For Location Class43Table 18 Location Selector Class Design43Table 19 Attribute Description for Location Selector Class43Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                                                                                                                                                                                                            |
| Table 16 Location Class Design42Table 17 Attribute Description For Location Class43Table 17 Attribute Description For Location Class43Table 18 Location Selector Class Design43Table 19 Attribute Description for Location Selector Class43Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                                                                                                                                                                                                                                                         |
| Table 17 Attribute Description For Location Class43Table 18 Location Selector Class Design43Table 19 Attribute Description for Location Selector Class43Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 18 Location Selector Class Design43Table 19 Attribute Description for Location Selector Class43Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Table 19 Attribute Description for Location Selector Class43Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 20 Operational Description for Location Selector Class43Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 21 Rate Location Class Design44Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 22 Operational Description for Rate Location Class44Table 23 Location Analyzer Class Design44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Table 23 Location Analyzer Class Design44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 24 Attribute Description For Location Analyzer Class45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Table 25 Operational Description For Location Analyzer Class45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 26 Preprocessor Class Design45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Table 27 Operational Description for Preprocessor Class45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Table 28 Cache Class Design46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Table 29 Operational Description for Cache Class | 46 |
|--------------------------------------------------|----|
| Table 30 Demographic Data Example                | 48 |
| Table 31 Combined Data Example                   | 49 |
| Table 32 Neural Network Details                  | 51 |
| Table 33 Features to be tested                   | 52 |

## ACRONYMS

- COVID-19 CoronaVirus disease of 2019
- GIS Geographic Information System
- PhD Doctor of Philosophy
- API Application Programming Interface
- CRISP-DM Cross-industry standard process for data mining

### ABSTRACT

If you are launching a new business or expanding an existing one, the location is a critical factor in determining whether the venture will prosper or fail<sup>[1]</sup>. People will spend a significant amount of time and resources researching where they can open their company, and they will frequently have a narrow selection with little insight on how their business will do. This project will try to address this issue by the use of location intelligence, which involves gathering and processing a wide range of geospatial and demographic data and transforming it into strategic insights to solve the problem. This project focuses on supermarkets and will help the business owners in making an informed decision by presenting choices and explaining why it will be the right location for their business.

### 1. Chapter 1: Introduction

### 1.1 Background

Ethiopia is one of the fastest developing countries despite the recent COVID-19 outbreak with a **6.1%** growth rate <sup>[2]</sup>. As new business institutions open up throughout the city, businesses are capitalizing on this growth. This provides motivation and incentive for every-entrepreneur to take an initiative and make their dreams a success. But in reality, most of them don't survive because of different reasons, one of them being location, location comes up as the sole disruptor simply because the location chosen wasn't ideal for the type of service they were providing.

Throughout the world, businesses fail at different rates but most of the underlying reasons aren't unique. In the United States of America, for example, 34% most flexible businesses expand or start anew, Retail Stores are a prime example <sup>[3].</sup>

In Ethiopia using location intelligence to choose a viable location for setting up your business is fairly uncommon. The common practice is physically going to visit locations and scouting if they are viable or not. Maps are rarely utilized. In Addition to that, most people believe maps as static data where the only information to extract from them is the location for places. So they rather rely on their own experience and knowledge. This project will mainly focus on how to improve Supermarkets Site selection by using maps and applying location intelligence. Similar products have been done globally which are explained in section 1.2. Some of them use pure GIS to solve this issue, while others focus on specific company examples.

### 1.2 The Existing System

There are a couple of research papers and products that are trying to solve these problems. All these solutions are outside of Ethiopia.

• Targomo [4]

Targomo was founded in 2013 and is based in Berlin and Potsdam. The platform is being used in: real estate and retail companies to forecast the potential of locations and optimize location networks, offers or delivery routes. Public transport companies to optimize their routes and transit network or promote green mobility.

### Selecting Location of Retail Stores Using Artificial Neural Networks and Google Places API <sup>[5]</sup>

A research paper was done by PhD candidates from the Department of Econometrics, Istanbul, Turkey. The research uses Google Places API services to get the data for nearby places. The system estimates the relation between environmental properties and existing stores and their financial rankings using Machine learning.

### • Azure Maps<sup>[6]</sup>

Azure Maps pulls in data on locations, competitors, traffic, and public transit through Microsoft partnerships with TomTom and Moovit to analyze catchment. Azure Maps also ingests data from any data provider including companies that offer human mobility data. Catchment analysis can help a retailer analyze business disruptors, decide where best to open a store, or identify opportunities for expanding business.

| Element                                                  | Description                                                                                                                                                                                                                                              |  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| The problem of Manual location searching                 | Businesses in search of a new location will have to do manual<br>location searching which consumes Time, energy and money.<br>realistically this method can't search for every location as a result the<br>business might miss a good business location. |  |
| Affects                                                  | Any business that depends on physical location. As an example, consider the supermarket.                                                                                                                                                                 |  |
| And results of Location<br>on Businesses                 | The impact of physical location on business is very high. It could<br>mean having a blossoming business or going out of business.                                                                                                                        |  |
| Benefits of a solution<br>using Location<br>Intelligence | The proposed solution is a system that will analyze a location<br>concerning its environment and rank the location according to its<br>profitability.<br>- Saves time, money and energy<br>- gives more option to choose from                            |  |

### **1.3 Statement of the Problem**

### 1.4 Objective of the Project

### **1.4.1 General Objective**

The goal of this project is to develop an intelligent web-based system for supermarket new site selection.

### 1.4.2 Specific Objective

- Data gathering and preparation
- Algorithm selection for the machine learning component
- Machine learning algorithm evaluation and training
- User interface design and implementation

### 1.5 Proposed System

In this project, we propose to develop an intelligent web-based system for supermarket new site selection. We will create web applications that will allow users to interact with the system and view the results. The system allows users to input the preferred locations through map interface and receive ratings for each location. They can also view location and demographic details about the location.

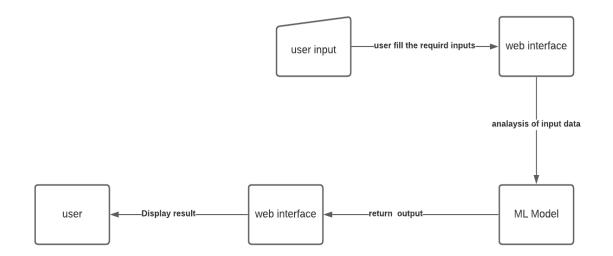



Figure 1 Data flow Diagram

### 1.6 Feasibility Study

#### **1.6.1 Economic Feasibility**

1.6.1.1 Developmental cost

| Reason                       | Cost (For Five Months Total) |
|------------------------------|------------------------------|
| Transportation               | 600 ETB                      |
| Internet and Phone Call Fees | 5000 ETB                     |
| Google Maps API              | Free (up to 100,00 requests) |
| Total                        | 5600 ETB                     |

Table 1 Developmental cost

Other than the costs described above, the system will not require additional cost to develop as it is not reliant on any external hardware requirement or paid software services.

#### 1.6.1.2 Operational Cost

We'll be hosting and maintaining the system on a free platform and it doesn't need manpower to operate it once it's developed. So we can say there will be no operational cost that can be predicted for the project at this point.

#### 1.6.2 Technical Feasibility

Our team is composed of members who are adept at Machine Learning and Full Stack Web Development. We'll be using free and open-source development as described in 1.8.3. But there are a few challenges facing the development of this project.

- We may not get demographic data from sub-city administrative regions as well as foot traffic data around the city.
- Returning a specific location data will be difficult as the granularity at that level causes the complexity and difficulty to exceed well beyond the scope of the project. Instead, it will return area-level data based on a certain radius chosen.

### 1.6.3 Schedule Feasibility

Despite the difficulty that is associated with this project and that the duration for projects this year have been cut down significantly, a proper schedule and continuous progress should provide enough time for the project to reach a demonstrable stage. We will use the time management policy listed in the time management plan section to finish the project on time.

### 1.7 Scope

The following features are the most important and define the entire product out of all the features that this product is supposed to have.

- The entire system will be focusing on Supermarkets.
- It will also be restricted to the city of Addis Ababa only.
- It will be web-based and it will include a map interface to display the appropriate locations based on the user's input.
- The interface will also display the reasoning behind why it chose those locations. It will show the results of location intelligence based on several factors like nearby competitors, places of interests and others that are weighted and given values that describe how preferable a certain location is.

### 1.8 Methodology

### **1.8.1** Data source and collection

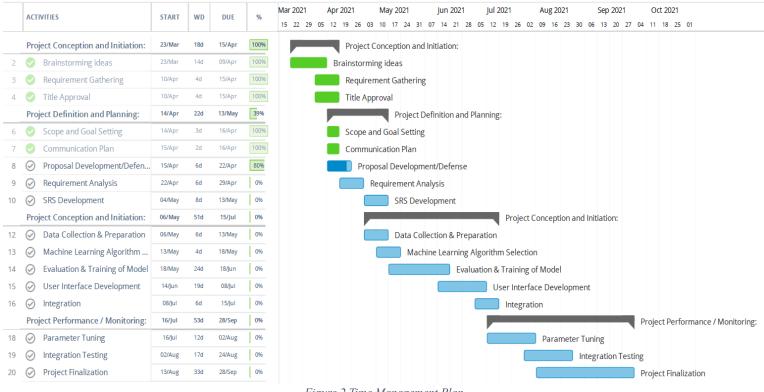
Most of the data for this project will be collected from the Google Maps Platform. Additional data not found from Google Maps API that is a necessary criterion for the project like demographic data will be taken from Dr Degefie's personal work dataset given to us.

### 1.8.2 Software Development Lifecycle

The plan for the development of the system takes into account the fact this is a Machine learning project with a defined set of core functionalities as a result the project will follow CRISP-DM methodology.

### 1.8.3 Development Tools

The tools that are necessary for the project are the following.


- Google Maps to extract data that deals with the criteria the retail industry values
- Javascript Framework to build the user interface
- Python for data analysis and machine learning

### 1.8.4 Testing

Internal testing is done throughout each iteration of the project development phases. while external testing is done by multiple iterations of understanding the business problem by asking questions, data acquisition from multiple sources, data cleaning, feature engineering and modelling.

### 1.9 Project Management plan

#### 1.9.1 Time Management Plan



#### Figure 2 Time Management Plan

#### 1.9.2 Quality Management Plan

The most significant risk for this project is obtaining accurate data on the required features. Because we will be using geospatial data, obtaining the correct data may be difficult. To solve this problem, we will use Google Place API to extract data using the free version.

The other is that using population data as a feature may present some difficulties because it requires labelling and extracting the necessary data from statistical data. In this regard, we will collaborate with Dr Degife, who taught us GIS to get accurate and well-structured data. To explain the machine learning model to users. We will create a web interface to allow users to interact with the system. The user interface will be simple to use even for inexperienced users.

Unit testing will be used to test the system at the unit level. After we finish building the system, we will conduct an integration test to ensure that all of the system's modules function as expected.

### 1.9.3 Communication Management Plan

We will communicate about the project using the following tools:

- **Google Meet:** We will use this tool to hold weekly meetings with the members of the group and the advisor.
- **Telegram**: Alternative method of communication with group members for short idea sharing
- Google Drive: we will use to share project documents
- Trello: We will use it to break down tasks and keep track of progress.
- GitHub: To share project codes.
- **Phone calls**: In the event that we are unable to access other tools, we will use this tool to communicate with the group members.

| Type of<br>Communication | Method / Tool                                                    | Frequency/<br>Schedule | Information                                                 | Participants /<br>Responsibilities      |  |
|--------------------------|------------------------------------------------------------------|------------------------|-------------------------------------------------------------|-----------------------------------------|--|
|                          | Internal Communication:                                          |                        |                                                             |                                         |  |
| Project Meetings         | Direct Meetings, Google<br>Meet, Telegram, Phone<br>call, Trello | Weekly and on event    | Project status, problems,<br>risks, changed<br>requirements | Project Manager<br>Project Team         |  |
| Sharing of project data  | Google Drive,<br>GitHub                                          | When available         | All project documentation<br>and reports                    | Project Manager<br>Project Team Members |  |
| Milestone Meetings       | Direct Meetings,<br>Google Meet                                  | Before milestones      | Project status (progress)                                   | Project Manager<br>Sub-project Manager  |  |

#### Table 2 Communication Management Plan

| Final Project Meeting                 | Direct Meetings,<br>Google Meet | M6      | Wrap-up<br>Experiences                                | Project Manager<br>Project Team         |
|---------------------------------------|---------------------------------|---------|-------------------------------------------------------|-----------------------------------------|
| External Communication and Reporting: |                                 |         |                                                       |                                         |
| Project Report                        | Google Drive,<br>Microsoft Word | Monthly | Project status<br>- progress<br>- forecast<br>- risks | Project Manager<br>Sub-Project Managers |

### 2. Chapter 2: Requirement Analysis

### 2.1 Introduction

In this chapter we outline product perspective, product functions, user characteristics, general constraints and assumptions and dependencies of the system to be developed. It also includes external interface requirements, use cases, non-functional requirement, inverse requirement, user interface, design constraints and logical database requirement and other requirements of the system.

### 2.2 Product Perspective

Currently, supermarket site selection is done manually, with people going to all of the possible locations to make a decision. Using a manual site selection has its own drawbacks. Among them are the following:

- When going around looking for a good location, a lot of labor is required because people must go from place to place looking for the best site, which can be very exhausting.
- When manually selecting sites, it can be costly to hire people to do the searching, and going from place to place incurs travel costs.
- When looking for the best supermarket location, you must visit a number of locations before deciding on the best one, which wastes time.

There are applications and studies that use location intelligence to predict business locations. Those applications, however, are not available in Ethiopia. The main reason is that the majority of the applications we reviewed on data that is inaccessible here in Ethiopia like foot traffic data or company profit. Another reason we can also consider is that most of these applications are not built with Africa or more specifically Ethiopia and other countries where data is scarce. Some of the applications reviewed include the following:

I. **Targomo**: Real Estate Search<sup>[4]</sup>

Targomo's Real Estate Search is a location intelligence platform used by both real estate companies to forecast potential locations, and home seekers to search for houses tailored and relevant to their needs.

Real Estate Search analyzes a wide range of locations that includes offices, gyms, universities, and hospitals and different ways to get there (car, bike, public transport, walkway) of a given country and recommends real estate companies potential spots for real estate development by the use of machine learning.

In return, home seekers include travel times, commute routes, neighborhood preferences, as their search option and Targomo is able to make recommendations of potential housing that fit the attributes selected by the user.

Targomo's web services that are available in all continents except Africa.

### II. Retail Location Analytics with Azure Maps<sup>[6]</sup>

Azure Maps can be used by Retailers to better understand a location and analyze business drivers and disruptors from a spatial perspective by performing Catchment analysis<sup>[6]</sup> and making use of the Azure's Route Range API.

A Catchment analysis is part of identifying whether it is viable to open a new retail store or outlet in a particular location. The analysis considers the following factors.

- a. Socio-demographics analysing consumers by age, life stage,education and income to help identify what customers look like, what they might be interested in, their disposable income and buying power.
- b. Infrastructure the surrounding transport network of roads, walkways and public transport indicate how accessible a location is. This accessibility will influence how far away your target audience might live and can impact how far they are prepared to travel
- c. Residential & workforce population looks at both residential and workforce population. The number of businesses, size and industry type will be important on the sales volume of a retail store.
- d. Competitor analysis looks at the local businesses within an area, the quantity, products and services offered and price point. These factors identify the potential level of demand of products and services and can highlight a retail service's pricing or category ranging strategy.

One of the biggest drawbacks of this application and is agreed upon even by the developers is that users see Azure maps as a service to just render maps and places. The Retail Location Analytics service is presented as a feature more than an independent marketable service and thus seems hidden from the common user .

### III. Selecting Location of Retail Stores Using Artificial Neural Networks and Google Places API<sup>[5]</sup>

A research paper published in December 2013 by PhD candidates from the Department of Econometrics, Istanbul, Turkey, describes a system that estimates the relation between environmental properties and existing stores and their financial rankings using Machine learning.

The research uses Google Places API services to get the data for nearby places. The system describes the geospatial attributes that affect a retail success as environmental properties. These environmental properties include bus stations, restaurants, banks, hospitals, religious institutions, entertainment venues, public transport stations, and schools.

The proposed method is based on construction of an Artificial Neural Network with a hidden layer of 120 Neurons that takes in environment properties as an input and returns rankings as output. This network has been trained multiple times, with the final network reported in 0.74 seconds with a network error of 0.00009. This small network error shows that the network fits the training data well but forecasting the data of the network should be investigated. For this purpose, looking at the Mean Absolute Deviations,Mean Square Methods, and Mean Absolute Deviations are quite small compared to the maximum possible values in case of worst forecasting performance.

The research describes that after reviews by experts, the method produces reasonable estimates of Ranking of candidate stores. The method also reveals similarities between the candidates and currently available stores.

The aim of this project is to create a system that will provide supermarket site selection using patterns recognized from nearby locations of currently existing supermarkets in Addis Ababa.

Unlike currently existing systems, this project has a narrower scope and targets only Addis Ababa supermarkets.

### **2.3 Product Functions**

The system is able to rate and rank user suggested sites for a supermarket based on nearby places and demographic data. This system will provide ways for viewing top rated sites and provide details on why each site received a specific rate.

| • Restaurants  | • Schools                                                             | Gas Stations |
|----------------|-----------------------------------------------------------------------|--------------|
| • Supermarkets | • Banks                                                               | Bus Station  |
| • Hospital     | <ul> <li>Religious<br/>Institutions(Mosques/<br/>Churches)</li> </ul> | • ATM        |
| • Pharmacy     | • Train Station                                                       |              |

The count of nearby places that we consider as parameters are:

### 2.4 User Characteristics

There is one type of user which uses the system. The user is expected to have basic computer skills and can access the internet.

### 2.5 General Constraints

• The up-to-date google maps - most of the data needed for the project comes from Google Maps Places API. The project accuracy dominantly depends on how accurate google map's data is.

### 2.6 Assumptions and Dependencies

The user is familiar with the fundamentals of computer operation and can access the internet via a browser.

### 2.7 User Interfaces

Table 3 UI-01 Home Page

| ID   | UI-01     |
|------|-----------|
| Name | Home page |



Figure 3 UI-01 - Home Page

Table 4 : UI-02 Preferred Locations

| ID          | UI-02                                          |
|-------------|------------------------------------------------|
| Name        | Preferred Locations                            |
| Description | Displays the user's chosen preferred location. |



Figure 4 UI-02 - Preferred Locations

LOCATION INTEL

Select your preffered locations you would like to set up your supermarket.

#### Locations

#1 Lideta 🛞 #2 Olympia 🛞

ANALYZE

| ID          | UI-03                                            |
|-------------|--------------------------------------------------|
| Name        | Analysis Result                                  |
| Description | Displays the rated locations in ascending order. |

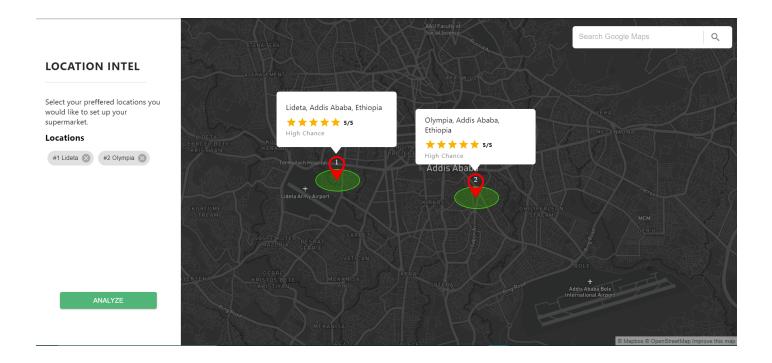



Figure 5 UI-03 - Analysis Result

| ID          | UI-04                                           |
|-------------|-------------------------------------------------|
| Name        | Location Details                                |
| Description | Displays the details of the analyzed locations. |

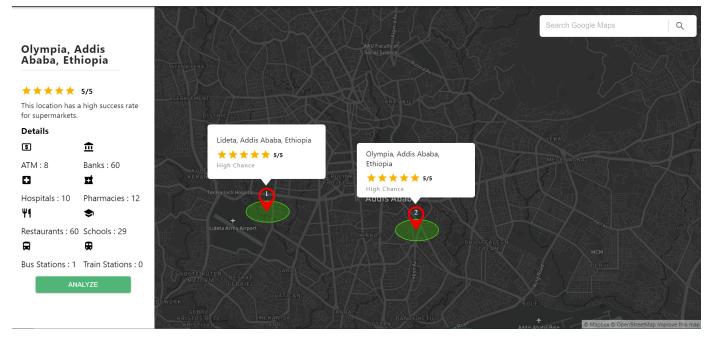



Figure 6 UI-04 - Location Details

### 2.8 Hardware Interfaces

The system has no hardware interface requirements.

### 2.9 Software Interfaces

The system will use Javascript Frameworks to build the user interface. We also will use Python frameworks to build the machine learning model. The system uses both Google maps and Mapbox to display and utilize map details. We'll also use MongoDB to serve as the database for caching the predicted results.

### 2.10 Communications Interfaces

### • Web Interface

The network would be used to access the application. The web site will provide complete access to all features.

### • HTTP protocol

The HTTP protocol will be used to communicate across the network by the System. Furthermore, this facilitates communication between clients and servers.

### 2.11 Functional Requirements

### 2.11.1 FR-1 Select Preferred Locations

#### Table 7 FR-01 - Select Preferred Locations

| ID             | FR-1                                                                                 |
|----------------|--------------------------------------------------------------------------------------|
| Introduction   | The system shall allow the user to select preferred locations by navigating on a map |
| Inputs         | None                                                                                 |
| Preprocessing  | None                                                                                 |
| Outputs        | Location coordinates                                                                 |
| Error handling | None                                                                                 |

### 2.11.2 FR-2 Analyze Locations

#### Table 8 FR-02 - Analyze Locations

| ID            | FR-2                                                                                                            |
|---------------|-----------------------------------------------------------------------------------------------------------------|
| Introduction  | The system shall analyze selected coordinates by gathering information from nearby places and demographic data. |
| Inputs        | None                                                                                                            |
| Preprocessing | FR-1                                                                                                            |

| Outputs        | A collection of preprocessed information for selected coordinates |
|----------------|-------------------------------------------------------------------|
| Error handling | None                                                              |

### 2.11.3 FR-3 Rate Locations

#### Table 9 FR-03 - Rate Locations

| ID             | FR-3                                                                  |
|----------------|-----------------------------------------------------------------------|
| Introduction   | The system shall predict the rating of a location using the ML model. |
| Inputs         | location demographic and nearby place data                            |
| Preprocessing  | FR-2                                                                  |
| Outputs        | A set of ratings for selected locations                               |
| Error handling | None                                                                  |

### 2.11.4 FR-4 Location Details

#### Table 10 FR-04 - Location Details

| ID             | FR-4                                                        |
|----------------|-------------------------------------------------------------|
| Introduction   | The system shall allow the user to see a location's detail. |
| Inputs         | None                                                        |
| Preprocessing  | FR-3                                                        |
| Outputs        | Detail of a location                                        |
| Error handling | None                                                        |

### 2.12 Use Cases

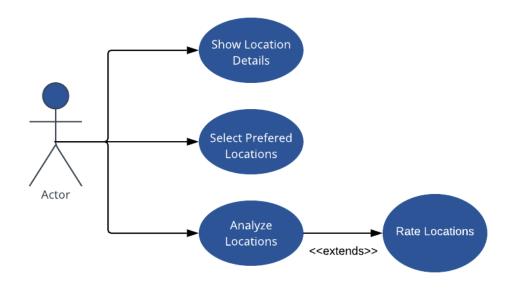



Figure 7 Use Case Diagram

### 2.12.1 Use Case 01

| Locations | Preferred | Select | - | UC-01 | e 11 | Table |
|-----------|-----------|--------|---|-------|------|-------|
| Location  | Preferred | Select | - | UC-01 | e 11 | Table |

| ID               | UC-01                                                                                                                                                                                                                                                         |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Name             | Select Preferred Locations                                                                                                                                                                                                                                    |  |  |
| Description      | Allow users to select their preferred location by hovering over the Map                                                                                                                                                                                       |  |  |
| Actors           | User                                                                                                                                                                                                                                                          |  |  |
| Pre Condition    | None                                                                                                                                                                                                                                                          |  |  |
| Post Condition   | Display selected locations                                                                                                                                                                                                                                    |  |  |
| Triggers         | The user wants to input its ideal supermarket locations                                                                                                                                                                                                       |  |  |
| Course of Action | <ol> <li>User opens up website</li> <li>System displays Home page user interface</li> <li>User pin a point on the map</li> <li>The system displays the pinned points in the Preferred Locations user<br/>interface (UI-02)</li> <li>Use case ended</li> </ol> |  |  |

### 2.12.2 Use Case 02

#### Table 12 UC-02 - Analyze Locations

| ID                           | UC-02                                                                                                                                                                                                                                                                                     |  |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Name                         | Analyze Locations                                                                                                                                                                                                                                                                         |  |  |
| Description                  | Allows users to rate the selected locations                                                                                                                                                                                                                                               |  |  |
| Actors                       | User                                                                                                                                                                                                                                                                                      |  |  |
| Pre Condition                | Selecting Preferred Locations (Use case - 01)                                                                                                                                                                                                                                             |  |  |
| Post Condition               | Display rates of locations                                                                                                                                                                                                                                                                |  |  |
| Triggers                     | The user wants to know the rates of selected locations                                                                                                                                                                                                                                    |  |  |
| Course of Action             | <ol> <li>System displays Preferred Locations user interface</li> <li>User clicks the analyze button</li> <li>The system start analyzing the locations</li> <li>The system displays the rates of locations in the Analysis Result user interface(UI-03)</li> <li>Use case ended</li> </ol> |  |  |
| Alternative course of Action | <ul><li>2.a. User provides invalid location</li><li>2.a.1. The system display invalid location</li><li>2.a.2. The system starts back at Home page user interface</li></ul>                                                                                                                |  |  |

### 2.12.3 Use Case 03

#### Table 13 UC-03 - Rating Locations

| ID               | UC-03                                                                                                                                          |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Name             | Rate locations                                                                                                                                 |  |
| Description      | The system predict the rating of a location                                                                                                    |  |
| Actors           | System                                                                                                                                         |  |
| Pre Condition    | Analyze Locations (Use case - 02)                                                                                                              |  |
| Post Condition   | Determine the rating of a location                                                                                                             |  |
| Triggers         | The user clicks analyze button                                                                                                                 |  |
| Course of Action | <ol> <li>The system requests the backend if the location exists in the cache</li> <li>If not, The system searches for nearby places</li> </ol> |  |

|                              | <ol> <li>The system retrieves demographic data</li> <li>The Model predicts the rate</li> <li>The system displays the rates of the locations in Analysis Result user interface(UI-03)</li> <li>Use case ended</li> </ol>                                             |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Alternative Course of Action | <ul> <li>2a. Location is found in the cache</li> <li>2a.1. The system returns the cached predicted results</li> <li>2a.2. The system displays the rates of the locations in Analysis Result</li> <li>user interface(UI-03)</li> <li>2a.3. Use case ended</li> </ul> |  |

### 2.12.4 Use Case 04

| Table 14 UC-04 - Location Details |
|-----------------------------------|
|-----------------------------------|

| ID               | UC-04                                                                                                                                                                                                                             |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Name             | Show Location details                                                                                                                                                                                                             |  |  |
| Description      | Users can see details of the rated location                                                                                                                                                                                       |  |  |
| Actors           | User                                                                                                                                                                                                                              |  |  |
| Pre Condition    | Analyzing Locations (use case 02)                                                                                                                                                                                                 |  |  |
| Post Condition   | Display details of rated location                                                                                                                                                                                                 |  |  |
| Triggers         | The user wants to find details of the rated location                                                                                                                                                                              |  |  |
| Course of Action | <ol> <li>System displays Analysis Result user interface</li> <li>User clicks location detail button</li> <li>The system display the details of the location in Location Details user interface</li> <li>Use case ended</li> </ol> |  |  |

### 2.13 Non-Functional Requirements

#### 2.13.1 Performance

- 90% of the transactions shall be processed within 5 seconds.

### 2.13.2 Reliability

- The system should be able support at least 2000 requests without failing on its server. It should have to display the precise locations and display them appropriately on a map.

### 2.13.3 Availability

- The system will be available 24 hours a day, 7 days a week.

### 2.13.4 Security

- The system uses HTTPS protocol through SSL/TLS Certificates to avoid HTTP attacks.

### 2.13.5 Maintainability

- The system attains its maintainability by using modular programming and little dependencies between the modules. It uses Github for version tracking and deployment.

### 2.13.6 Portability

- Because the system is designed for web applications, it should be accessible from any device that supports HTML, CSS, and JavaScript. To support a wide range of browsers, the system will be designed in a responsive manner.

### 2.14 Inverse Requirements

- The application does not take into account or aim to improve a supermarket's internal marketing strategies such as customer retention schemes and giveaways.

### 2.15 Design Constraints

- Google Maps Places' API can only retrieve a maximum of 60 nearby places
- If the system utilizes Google Maps Architecture, the model will automatically update.

### 2.16 Logical Database Requirements

| Table | Description                                                                                                    | Attributes |
|-------|----------------------------------------------------------------------------------------------------------------|------------|
| Cache | Holds the results of previously predicted data for a certain time as a temporary cache to optimize performance |            |

#### Table 15 Logical Database Requirements

### 2.17 Other Requirements

### • Training-related Requirements

This system can be used by anyone with a basic understanding of computers. As a result, there is no training for the system. Furthermore, we can provide end users with documentation that explains how the system works.

### • Packaging Requirements

The project is a web-based program that includes a variety of file formats that are associated with the web discipline and Machine learning model. To name a couple, the ".JS" and "Read me" text files that will be packed.

### • Legal Requirements

The system will be available on GITHUB under an MIT license. We chose this license over other open-source licenses because it is a short and easy permissive license with only the protection of copyright and license notices as conditions. Licensed works, revisions, and larger works can be distributed with or without source code under different terms.

### 2.18 Change Management Process

Requirements may change during the development course of the project. These changes are applied only after going through the following change management process.

A team member proposes a requirement change. The proposed change should include scope, reason and impact for the change.

- The pros and cons of the change will be examined by the team.
- The requirement will be submitted to the advisor for approval.
- The advisor will decide if the change is relevant
- The requirement change will be added to this document.

# 3. Chapter 3: System Design

## 3.1 General Overview

The purpose of this Supermarket Selection Application is to enable business owners and entrepreneurs to facilitate site selection using demographic data and data collected around supermarkets in Addis Ababa. It's limited within the scope of focusing specifically on the city of Addis Ababa and the field of Supermarket locations. It will give the users the ability to choose their preferred locations.

The system will have four main components: the Web application, the ML model, Backend and the Google Maps Places API. The Web application will have the main canvas that users can provide information about the preferred locations. It also gives the functionality for more information on predicted insights. The backend communicates with the model and database to facilitate the caching process. The ML model does most of the work; it processes the given locations and rates them based on previously learned data.

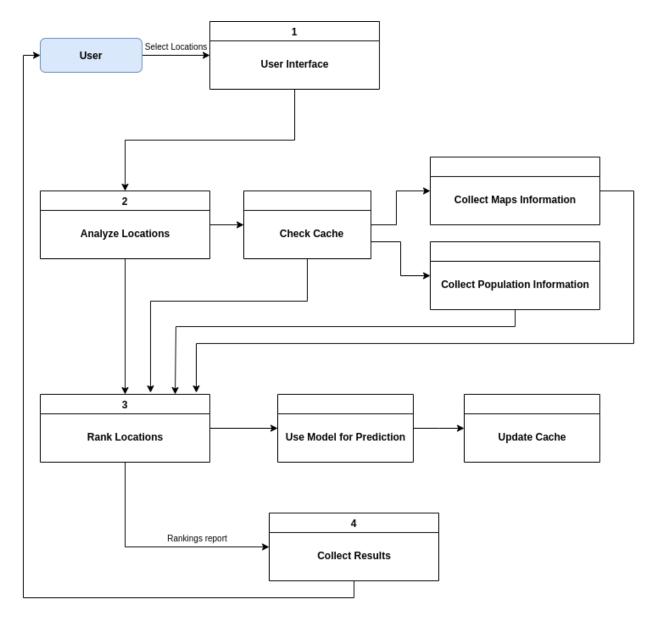



Figure 8 System Overview

## 3.2 Development Methods & Contingencies

This project will follow the CRISP-DM methodology. This framework is best fit for carrying out data mining projects and sets out activities to be performed into six phases. The successful completion of a phase initiates the execution of the subsequent activity. CRISP-DM includes iterations of revisiting previous steps until success or completion criteria are met.

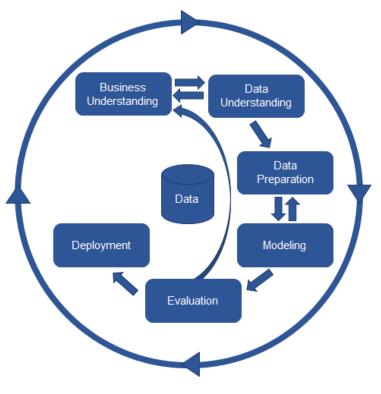



Figure 9 CRISP-DM Cycle

This project will be done in the phases of the following.

- Business understanding Our first phase of the project includes finding out what geospatial attributes make a successful supermarket. We will list and research until a set of attributes is agreed upon.
- Data understanding The second phase consists of understanding our sources and meaning of our data.
- Data Preparation The next phase consists of cleaning, labeling and feature engineering the geospatial data we have in order to filter and select the attributes we agreed upon.
- Modeling Fourth phase consists of training the model with the ANN (Artificial Neural Network) algorithm and K-means clustering.
- Evaluation Assess the degree at which the model meets the business objective .
- Deployment After taking our evaluation results, we determine a strategy for their deployment.

## 3.3 System Architecture

### 3.3.1 Subsystem decomposition

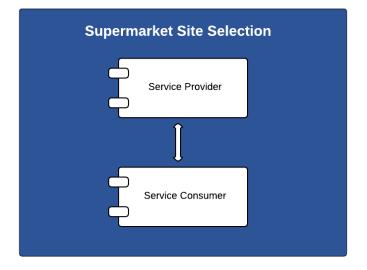



Figure 10 Level 0 Decomposition

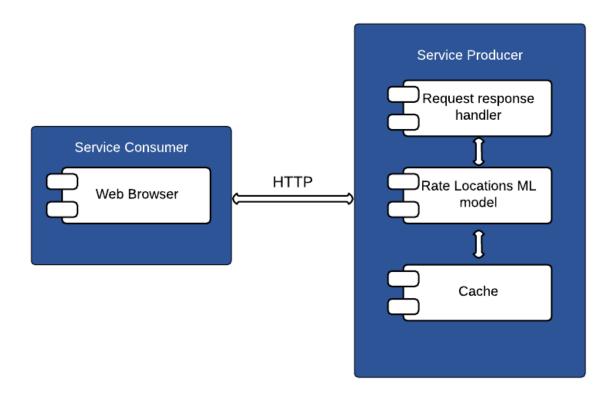



Figure 11 . Level 1 Decomposition

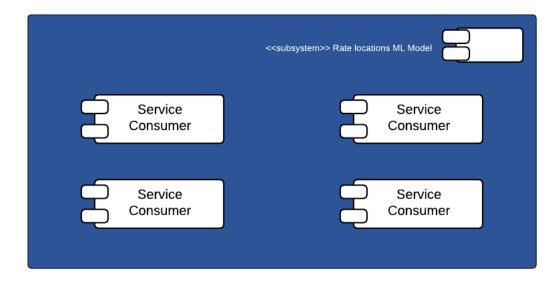



Figure 12 Level 2 Decomposition

## 3.3.2 Hardware/software mapping

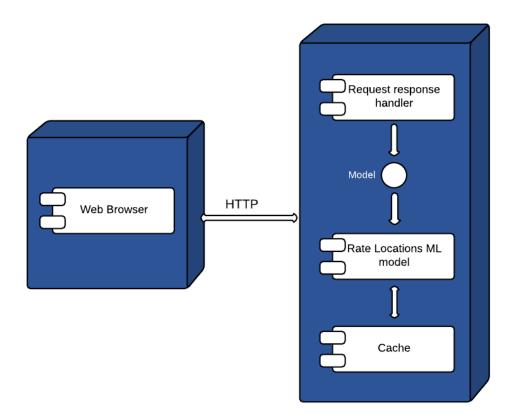



Figure 13 Architecture

# 3.4 Object Model

#### 3.4.1 Class Diagram

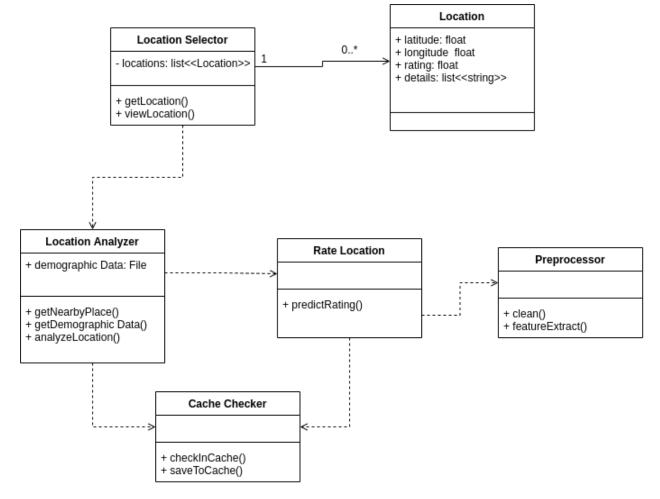
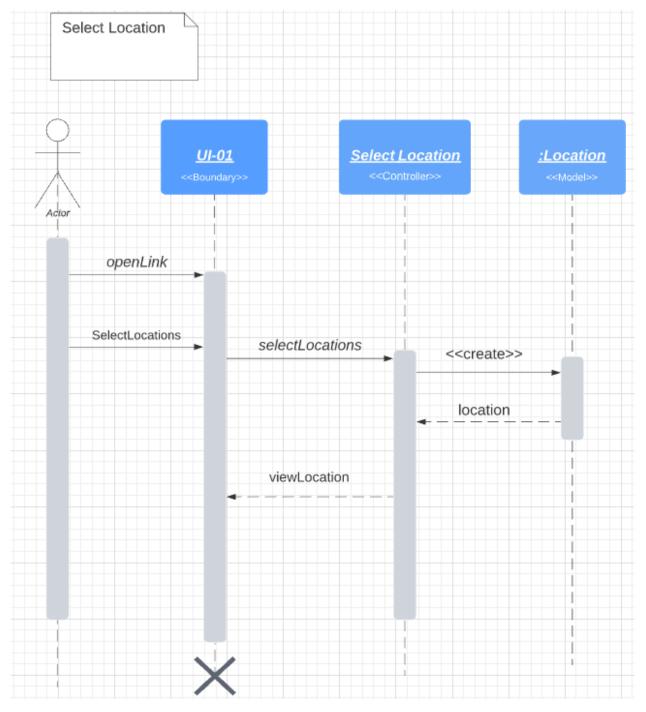
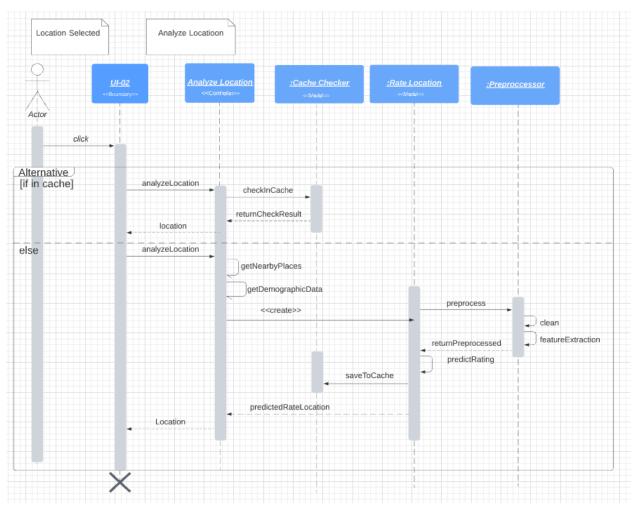
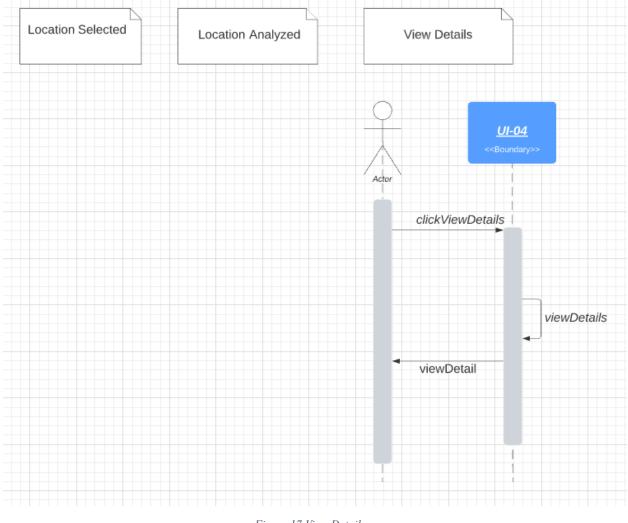



Figure 14 Class Diagram

## 3.4.2 Sequence Diagram

## 3.4.3 Select Location



Figure 15 Select Location



## 3.4.4 Analyze Location

Figure 16 Analyze Location

## 3.4.5 View Details



#### Figure 17 View Details

# 3.5 Detailed Design

## 3.5.1 Location Class

Table 16 Location Class Design

| Location                                                                                     |  |
|----------------------------------------------------------------------------------------------|--|
| +latitude:float<br>+longitude:float<br>+rating:float<br>+details:list< <string>&gt;</string> |  |

#### Table 17 Attribute Description For Location Class

| Attribute | Туре                        | Visibility | Invariant        |
|-----------|-----------------------------|------------|------------------|
| latitude  | float                       | Public     | latitude ~> NULL |
| longitude | float                       | Public     | longitude<>NULL  |
| rating    | float                       | Public     | -                |
| details   | list< <string>&gt;</string> | Public     | -                |

## 3.5.2 Location Selector Class

Table 18 Location Selector Class Design

| Location Selector                          |
|--------------------------------------------|
| -locations:list< <location>&gt;</location> |
| +getLocation ()<br>+viewLocation()         |

#### Table 19 Attribute Description for Location Selector Class

| Attribute | Туре     | Visibility | Invariant                                                                                                                 |
|-----------|----------|------------|---------------------------------------------------------------------------------------------------------------------------|
| locations | Location | Private    | Location >> NULL.<br>Must contain longitude and latitude and an optional value of the rating, details<br>of the location. |

#### Table 20 Operational Description for Location Selector Class

| Operation    | Visibility | Return type | Argument | Pre-Condition                                            | Post Condition                                                           |
|--------------|------------|-------------|----------|----------------------------------------------------------|--------------------------------------------------------------------------|
| getLocation  | Public     | void        | Location | The user must select the location by clicking on the map | Map has loaded                                                           |
| viewLocation | Public     | void        | Location | The user must select a location                          | The system returns the locations selected and views them on the sidebar. |

#### 3.5.3 Rate Location Class

Table 21 Rate Location Class Design

| Rate Location                     |  |
|-----------------------------------|--|
|                                   |  |
| +predictRate()<br>-preprocessor() |  |

Table 22 Operational Description for Rate Location Class

| Operation    | Visibility | Return<br>type | Argument                  | Pre-Condition                 | Post-Condition                                                              |
|--------------|------------|----------------|---------------------------|-------------------------------|-----------------------------------------------------------------------------|
| predictRate  | Public     | List           | locations, cached results | Location data is preprocessed | System Predicts and assigns ratings for the locations                       |
| preprocessor | Private    | void           | locations                 |                               | The system performs feature<br>engineering and normalizes<br>location data. |

## 3.5.4 Location Analyzer Class

Table 23 Location Analyzer Class Design

| Location Analyzer Class                                            |  |  |
|--------------------------------------------------------------------|--|--|
| +demographicData: File                                             |  |  |
| +getNearbyPlace ()<br>+getDemographicData ()<br>+analyzeLocation() |  |  |

|  | AttributeTypedemographicDataFile |  | Visibility | Invariant |  |
|--|----------------------------------|--|------------|-----------|--|
|  |                                  |  | Public     | File NULL |  |

| Operation          | Visibility | Return type                 | Argument | Pre-Condition                                                       | Post Condition                                                     |
|--------------------|------------|-----------------------------|----------|---------------------------------------------------------------------|--------------------------------------------------------------------|
| getNearbyPlace     | Public     | List< <string>&gt;</string> | location | The user must select the location and hit the analyze button        | The system retrieves the nearby places of the specific location    |
| getDemographicData | Public     | List< <string>&gt;</string> | location | The user must select the location and hit the analyze button        | The system retrieves the demographic data of the specific location |
| analyzeLocation    | Public     | List< <string>&gt;</string> | List     | A location's demographic<br>data and nearby places are<br>retrieved | The system analyzes the data retrieved from a specific location.   |

## 3.5.5 Preprocessor Class

#### Table 26 Preprocessor Class Design

| reprocessor                  |  |
|------------------------------|--|
|                              |  |
| clean()<br>featureEngineer() |  |

#### Table 27 Operational Description for Preprocessor Class

| Operation       | Visibility | Return<br>type | Argument                    | Pre-Condition             | Post-Condition                                                              |
|-----------------|------------|----------------|-----------------------------|---------------------------|-----------------------------------------------------------------------------|
| clean           | Public     | List           | List< <string>&gt;</string> | Location data is selected | System removes<br>unnecessary information and<br>cleans data                |
| featureEngineer | Public     | List           | List< <string>&gt;</string> | Location data is cleaned  | The system performs feature<br>engineering and normalizes<br>location data. |

#### 3.5.6 Cache Checker Class

| Table | 28 | Cache | Class | Design |
|-------|----|-------|-------|--------|
|-------|----|-------|-------|--------|

| Cache Checker                     |  |  |
|-----------------------------------|--|--|
|                                   |  |  |
| +checkInCache()<br>+saveToCache() |  |  |

| Table 29 | Operational | Description for | r Cache Class |
|----------|-------------|-----------------|---------------|
|----------|-------------|-----------------|---------------|

| Operation    | Visibility | Return type                 | Argument                    | Pre-Condition                                                | Post-Condition                                                                            |
|--------------|------------|-----------------------------|-----------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| checkInCache | Public     | List< <string>&gt;</string> | location                    | The user must select the location and hit the analyze button | The system checks if a nearby location was already predicted for and returns if existent. |
| saveToCache  | Private    | void                        | List< <string>&gt;</string> | Location rating is predicted                                 | Results are cached into the system                                                        |

## 3.6 Pseudocode and Algorithm Analysis

#### 3.6.1 Data collection

The dataset is a combination of nearby places and demographic data for each supermarket. Here are the steps to collect the data:

- i. Locate supermarkets
- **ii. Gather nearby places:** gathering data such as the number of ATMs, the number of Bus stations, the number of supermarkets, etc for each supermarket within 500m radius. We chose 500m because it is proven to work on paper<sup>[2]</sup>, as it is not very large and at the same time not too small.

The number of objects fetched using Google Places API serves as information about the structure of potential customers for a given area. For instance, the number of schools and universities is a proxy variable for educational structure of population, whereas, the numbers of bus stations, gas stations, subway stations and taxi stands are proxies for

transportation structure of the given area. Some variables, such as, the number of casinos and the number of night clubs and pubs give an idea of customer population in certain time intervals<sup>[2]</sup>.

|                | Items                    |                    |
|----------------|--------------------------|--------------------|
| accounting     | embassy                  | museum 🗸           |
| airport        | establishment            | night_club         |
| amusement_park | finance                  | painter            |
| aquarium       | fire_station             | park               |
| art_gallery    | florist                  | parking 🗸          |
| atm 🗸          | food 🗸                   | pet_store          |
| bakery         | funeral_home             | pharmacy 🗸         |
| bank           | furniture_store          | physiotherapist    |
| bar 🗸          | gas_station              | place_of_worship   |
| beauty_salon   | general_contractor       | plumber            |
| bicycle_store  | grocery_or_supermarket ✓ | police 🗸           |
| book_store     | gym                      | post_office        |
| bowling_alley  | hair_care                | real_estate_agency |
| bus_station 🗸  | hardware_store           | restaurant 🗸       |
| cafe 🗸         | health 🗸                 | roofing_contractor |
| campground     | hindu_temple             | rv_park            |
| car_dealer     | home_goods_store         | school 🗸           |
| car_rental     | hospital 🗸               | shoe_store         |
| car_repair     | insurance_agency         | shopping_mall 🗸    |
|                |                          |                    |

Figure 18 List of data we collect from Google Maps API

*iii.* Collect demographic data per Woreda: The main features are population, the number of male and females by age group, and the number of households.

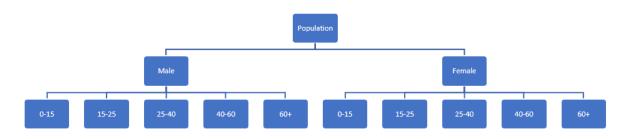



Figure 19 demographic data age distribution

#### Table 30 Demographic Data Example

| SubCity id | Male<br>population | Female<br>population |
|------------|--------------------|----------------------|
| 1          | 2341               | 5424                 |

## iv. Combine the gathered data

#### Table 31 Combined Data Example

| ID | Restaurants | Supermarkets | Hospitals | Schools | Banks | Religious<br>Institutions | Gas<br>Stations | ATMs |
|----|-------------|--------------|-----------|---------|-------|---------------------------|-----------------|------|
| 01 | 4           | 7            | 3.        | 2       | 6     | 2                         | 1               | 5    |

| Bus Stops | Woreda | Rating |
|-----------|--------|--------|
| 10        | 9      | 4      |

#### 3.7 Train the model

- i. Organize the data into train, validation and test set
- ii. Load the data
- iii. Preprocess
  - Read data
  - Perform feature engineering
    - Selecting the best features and creating new features by combining them.
       For example, from Google nearby we have shopping mall and grocery\_or\_supermarket as different attributes. By combining these two we can say both as supermarkets.

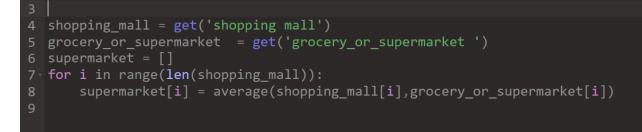



Figure 20 pseudocode for feature engineering

- Normalize the data: The goal is to change the values of numeric columns in the dataset to a common scale, without distorting differences in the ranges of values to get local minimum fast.
- iv. Train the model
  - k-means algorithm: for clustering the data by rating. k-means works by calculating the distance

$$E = \sum_{i=1}^{k} \sum_{x \in C_i} \left| x - m_i \right|^2$$

• ANN once we have the annotated data clustered by k-means algorithm we can train our network using ANN

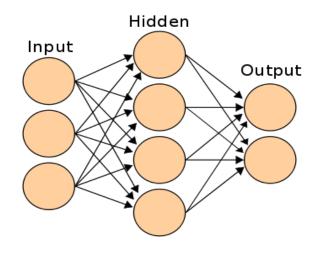



Figure 21 Neural Networks Design

Table 32 Neural Network Details

| Parameter     | Value | Description                                                                        |
|---------------|-------|------------------------------------------------------------------------------------|
| Inputs        | 11    | Selected by best performance through feature engineering                           |
| Hidden Layers | 1     | 120 Neurons with Sigmoid transfer function                                         |
| Output        | 6     | Bit vectors for Rating. this is predicted rating of the model which rates from 0-5 |

- v. Validate the model
- vi. If validation can be improved, go to step 1

## 3.8 Prediction

- i. Preprocess the data
- ii. Call "predict method" on the trained model

# 4. Chapter 4: Testing

## 4.1 Introduction

This document is the Master Test Plan for Location Intelligence: Supermarket site selection. The standard template adopted is the **IEEE-829 Test plan document template**. The objective of this document is primarily to test:

- Correctness of the implementation of the features described in SRS
- Correctness of Module interfaces and interactions with respect to those described in the SDS.

The project will have three levels of testing; unit level testing, system/integration testing, and acceptance testing. Furthermore a separate Test Design Document has been prepared in order to give detail on test cases

## 4.2 Features to be tested/not to be tested

#### 4.2.1 Features to be tested

\_

The following is a list of the areas to be focused on during testing of the location intelligence platform.

| Feature                          | Description                                                                                                | Level of Risk |
|----------------------------------|------------------------------------------------------------------------------------------------------------|---------------|
| Select Preferred Location. [FR1] | This feature allows the user to select preferred locations by navigating the map.                          | High          |
| Analyze Locations [FR2]          | The system analyzes selected coordinates by gathering information from nearby places and demographic data. | High          |
| View Location Details [FR4]      | The system shall allow the user to see a location's detail.                                                | Medium        |

#### Table 33 Features to be tested

#### 4.2.2 Features not to be tested

The following is a list of the areas that will not be specifically addressed during testing of the application

- Rate Locations [FR3]
  - The *Rate Location* feature consists of the *Rating ML Model*. The Model's testing set will not be validated due to its dependency on google maps. The validity of the data is handled by the third party.

## 4.3 Pass/Fail criteria

The pass or fail criteria for a test item are determined by the sort of testing conducted on it.

• Unit Test

The pass/fail criteria for unit tests are simple, and unittest in Python will decide them. After the unit test suite has finished running, unittest will label each individual unit test as succeeded or failed based on our assert assertions.Once all test cases pass successfully, we will consider our unit testing to be complete.

## • Acceptance Testing

Each of our requirements from our Requirements Document will be marked as "not accepted" for acceptance testing. Once the project is completed, the application for a specific need will be designated as "approved" if that requirement has been successfully executed. The development team will also follow this procedure for earlier testing.

#### • Load and stress Testing

The test item will pass if the application performs to an acceptable level after being loaded to a given capacity. The test item, on the other hand, will fail if the application performs poorly.

## 4.4 Approach/Strategy

The testing levels for this project consists of Unit Level Testing, System/Integration Testing, and Acceptance Testing.

## 4.5 Testing Levels

#### 4.5.1 Unit Testing

The whitebox unit testing strategy is applied in two sectors, with the aim of ensuring that the requirements are properly satisfied by the application.

- Front-end Unit Testing
  - Cypress unit testing tool is used to test each of the front-end components in isolation.
- Back-end Unit Testing
  - PyTest framework is used to perform functional testing.

#### 4.5.2 Integration Testing

- Since Integration tests have no strict rule as unit testing, the general direction taken is using PyTest to test functionality, reliability and performance of the API.

#### 4.5.3 System Testing

- The system will be manually tested by the development team.

## 4.5.4 Testing Types

- The tests are based on the functional and non-functional requirements specified on the requirements specification document.

## 4.5.5 Testing Methods

- White box testing.
- Manual : System level testing will be conducted manually by the development team.

# Test cases with specifications

| Table | 1. | Test | case | specification | for select | preferred location  |
|-------|----|------|------|---------------|------------|---------------------|
| inon  | 1. | rest | cuse | specification | jor sereer | prejerrea iocuitori |

| Name: Select Preferred Location                         |                                                         |                                                                 |               |           |  |  |
|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------|-----------|--|--|
| Purpose: to verify appropriate location is selected     |                                                         |                                                                 |               |           |  |  |
| Test Data= longitude and latitude of a place            |                                                         |                                                                 |               |           |  |  |
| Input                                                   | Expected result                                         | Data                                                            | Actual output | Pass/fail |  |  |
| longitude and latitude<br>inside Addis Ababa region     | display selected location                               | Any longitude and latitude inside Addis Ababa region            |               |           |  |  |
| longitude and latitude<br>outside Addis Ababa<br>region | "location is outside Addis<br>Ababa" error is displayed | Any longitude and latitude<br>outsideside Addis Ababa<br>region |               |           |  |  |

#### Table 1: Test case specification for Analyze Locations

| Name: Analyze Locations                                                                                       |                                         |                                                                 |               |           |  |  |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|---------------|-----------|--|--|
| <b>Purpose</b> : to verify the core functionality, which analyzes a location and gives the rating of a place. |                                         |                                                                 |               |           |  |  |
| Test Data= longitude and latitude of a place                                                                  |                                         |                                                                 |               |           |  |  |
| Input                                                                                                         | Expected result                         | Data                                                            | Actual output | Pass/fail |  |  |
| one longitude and latitude                                                                                    | display rated location                  | one longitude and latitude inside Addis Ababa region            |               |           |  |  |
| multiple longitude and latitude                                                                               | display rated location                  | multiple longitude and<br>latitude inside Addis Ababa<br>region |               |           |  |  |
| empty longitude and latitude                                                                                  | "select location" error is<br>displayed | empty longitude and latitude<br>inside Addis Ababa region       |               |           |  |  |

#### Table 1: Test case specification for Login

| Name: View Location Details                             |                          |                                                |               |           |  |  |  |  |
|---------------------------------------------------------|--------------------------|------------------------------------------------|---------------|-----------|--|--|--|--|
| Purpose: to verify users can view details of a location |                          |                                                |               |           |  |  |  |  |
| Test Data= entry/record ID                              |                          |                                                |               |           |  |  |  |  |
| Input                                                   | Expected result          | Data                                           | Actual output | Pass/fail |  |  |  |  |
| The unique ID of entry                                  | display Location Details | Any unique ID of entry that<br>is to be viewed |               |           |  |  |  |  |

# 5. Chapter 5: User Manual

#### Scope 5.1

This manual covers how to use supermarket site selection software systems.

The manual covers the following:

- How to start the system •
- How to select preferred location •
- How to view details of analyzed location •

#### 5.2 Installation and configuration

The system is web based and doesn't require any special configuration or installation but we recommend the user to use known browsers such as chrome, firefox, safari or microsoft edge.

#### 5.3 How to Operate the system

A. How to start the system

Locations



Open the system through the url and it will show a map interface

Figure 22 Landing page of the Application

#### B. How to select preferred location

There are two ways you can select your preferred location:

i. Enter name of your preferred location in the search box




Figure 23 preferred location through search box

ii. pan around on the map and use left click to pinpoint your preferred location



Figure 24 preferred location through panning

#### C. How to analyze location

Once you select the preferred location click on analyze button



Figure 25 Analyze Locations

D. How to view details of the analyzed location

Once the system analyzes the locations, pan on the map and click the location you wish to view its details.

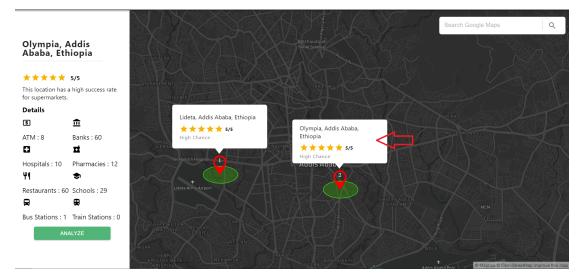



Figure 26 View details of analyzed locations

# 6. Chapter 6: CONCLUSION AND RECOMMENDATION

#### 6.1 Conclusion

Using Location intelligence, one can get insights quicker, in a more intuitive and cost efficient manner. To apply this technology though, we would need to gather as much data as we can for better accuracy. Other developed countries have the benefit of already built structures and data acquisition practices in play for years from foot traffic data, wealth distribution, business profit projections to many types of data that is enabling them to prosper and see patterns humans cannot see. For developing countries like Ethiopia, acquiring such data is hard despite the lack of data. We have tried to show what we can achieve using the available information around us. We used Google Maps and Census data alongside Machine Learning to showcase the potential of Location Intelligence.

#### 6.2 Recommendation

This project is meant to showcase how location intelligence can be used for businesses. Even Though the system is performing as expected it can be further improved by adding datas like, actual profit of each supermarket instead of relying solely on biased user rating, and expand the range of our demographic data to income and growth of the neighborhood. As this project requires intensive data gathering and years of research to have a real world working system we can only lead the way and inspire future researchers.

# 7. **BIBLIOGRAPHY**

- [1] Supermarket Key Attributes and Location Decisions
- [2] Ethiopia Economic Outlook
- [3] Underlying Causes of Micro and Small Business Failures in Addis Ketema Sub City
- [4] Targomo
- [5] Selecting Location of Retail Stores Using Artificial Neural Networks and Google Places API
- [6] Azure Maps
- [7] Addis Ababa statics

# REFERENCES

- [1] Supermarket Key Attributes and Location Decisions
- [2] Ethiopia Economic Outlook
- [3] Underlying Causes of Micro and Small Business Failures in Addis Ketema Sub City
- [4] Targomo
- [5] Selecting Location of Retail Stores Using Artificial Neural Networks and Google Places API
- [6] Azure Maps
- [7] Addis Ababa statics